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1. Introduction. In this note we consider the analysis of

a plate which consists of parallel load-carrying strips of 'high

modulus separated by buffer strips of relatively low modulus [1].

Both strips are boron-epoxy composite. Through an appropriate

orientation of the fibers, a relatively low modulus and high

toughness is achieved in the buffer strips. This in turn improves

the crack arrest characteristics of the structure as a whole.

Even though the primary (load-carrying) laminates and the buffer

strips are highly anisotropic, in this note for reasons of analyt-

ical expediency, it will be assumed that both materials are iso-

tropic and linearly elastic (Figure 1). A symmetrically located

through crack is assumed to form and propagate in the primary

laminate, and eventually to enter into the buffer strips. The

objective of this note is to calculate an upper and a lower bound

for the stress intensity factor when the crack tips are in the

primary laminate, in the buffer strips, and at the interfaces.

2. Bounds for the stress intensity factor. The actual

problem is described in Figure 1. The composite plate is assumed

to contain a symmetrically located through crack of length 2a,

*This work was supported by NASA-Langley under the Grant
NGR 39-007-011.

-1-



2b b2 2h 1 2I_ _2

2h2

1 2 1 2 1

01  a2

Figure 1. The geometry of the actual composite plate.
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Figure 2. The geometry of idealized composite plate.
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where 0< ah 2 , h2 = h1 + 2b2 , 2h1 and 2b2 being the widths of

the primary laminate (material 1) and the buffer strip (material,

2), respectively. The crack is perpendicular to the bimaterial

interfaces. The plate is subjected to uniaxial loading parallel

to the strips outside the perturbation zone of the crack. The

elastic constants of the materials 1 and 2 are E1, v1 (or

l1 = E1 /2(l+vl)' Kl = (3-vl)/(l+v,)) and E2, v2 (or P2' K2 )'

respectively. The elastic constants of the composite plate may

be evaluated from

Ec = (hlE 1 + b2E2 )/(h1 + b2) ,

c = (hv 1 + b2 2 )/(h1 + b2 ) " (1)

In the plate without the crack the stresses 01 and 02 acting on

the strips in a plane perpendicular to the interfaces are related

by

01/02 = El/E2. (2)

The solution of the problem described in Figure 1 is not

available and, at present, appears to be intractable. However,

through a judicious choice of the elastic constants and the

dimensions in the problem described in Figure 2 (the solution of

which is available [2]) one could find estimates for an upper and

a lower bound for the corresponding stress intensity factors.

One simple procedure to obtain these estimates is the following:

(a) An upper bound for the stress intensity factor k when

the crack is in the primary laminate: 0< a< h

This estimate may easily be obtained by replacing the
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part of the composite plate Ixl> h2 (see Figure 1) by homogeneous

half planes having the elastic constants of the buffer strip,

E2 ' v2 . Since the stiffness of the resulting half planes Ixl> h

is less than that of the half planes in the actual structure, the

stress intensity factor calculated from Figure 2 with

p(x) = -ol ,  a a < h1  h* = h1 , E = E

v = v1, E2 = E2' V 2 , (3)

would be greater than the k value corresponding to Figure 1.

(b) A lower bound for k when the crack is in the primary

laminate: 0< a < h .

This estimate may be obtained by replacing the non-

homogeneous composite plate for Ix > hI by the equivalent homo-

geneous composite half planes where

p(x) = -al a* = a < hl ,  h* = h1 , E = E

Vl = vl' E2 = Ec' V2 = c (4)

Here the reason for the resulting k being lower than the actual

k is that the stiffness Ec used for calculations in Figure 2 is

greater than E2 which is the stiffness of the neighboring media

in the actual problem (Figure 1).

(c) A lower bound for k when the crack is in the buffer

strip: hI <a< h2 .

This estimate may be obtained by replacing the nonhomo-

geneous composite plate by a homogeneous strip (E2, v2) (which

has a stiffness smaller than the actual) for Ixi < h2 and by
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homogeneous half planes (E1, v1 ) (which have a stiffness greater

than the actual) for Ixl> h2 and using the pressure p =-a 2 as the

external load. Thus in Figure 2 the parameters would be

p(x) = -2, a*= a, h*= h2  E = E2

V* = El  * = (5)
1 V2  E2 E1' 2 1

(d) A closer lower bound for k when the crack is in the

buffer strip: h < a < h2.

This estimate is obtained by using the same plate as

in (c) with the actual (and higher) crack surface pressure, i.e.,

a* = a, h* = h2 , E= E2  v V2  E E1'

S-a, for Ix< hl ,
v*2= v ,  p(x) = 1  (6)

-a2  for h1 < Ix 1< a.

Theoretically, the k value given by this estimate is still a

lower bound, but is believed to be quite close to the actual

stress intensity factor.

In the problems described above the solution is obtained

through a superposition where the stress intensity factor is

calculated from the singular solution in which the crack surface

pressure is the only external load (Figure 2). In the solution

given in this note, as long as the crack tip is away from the

interfaces, the following asymptotic standard expression is valid

for the cleavage stress yy around the crack tip:

ayy (x,O) k , (af h. i =1,2). (7)
y2(x-a)
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However, if the crack tip terminates at an interface, the asymp-

totic stresses around the crack tip are given by [3.,4]

a (r, ) f0(r ) , (ij = r,0;

Re(C 2 )> 0, 0< a< 1), (8)

where the crack is assumed to lie along 0= 7r (i.e., the negative

x axis) [3,4]. Following Figure 3, if P2 > l1 then 0< < 0.5 and

if 12 < 1l then 0.5 < a < 1. The functions fij(0) giving the angu-

lar variation of the stresses around the crack tip for a symmet-

rically loaded crack (i.e., first mode) and for various values

of P2/ / are shown in Figures 3-5 in the following normalized

form:

fij( ) = Gij( )/G (O) , (i,j = r, ). (9)

3. The Numerical Results. The numerical results given in

this section are obtained for the boron-epoxy composite plate

which was considered in [1]. The material constants of the

(equivalent) isotropic materials are:

Primary laminates: El =11.39x0l6psi, v1 
= 0.33,

Buffer strips: E2 = 2.42x106psi, v2 = 0.85,

Composite plate (hl/b I =2): Ec=8.4xl0 6psi, Vc =0.503,

(i.e., 1/111 2  = 6.55, K1 = 2, K2 = 1.16, iLc/il = 0.657,

Kc = 1.66).

The results corresponding to the cases (a)-(d) described in

Section 2 are given in Tables 1-4, respectively, and are summa-

rized in Figure 6. Note that Table 1 is valid for any value of
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Figure 3. Angular variation of a e around a crack tip
touching the interface.
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Figure 4. Angular variation of 're around a crack tip
touching the interface.
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Figure 5. Angular variation of arr around a crack tip
touching the interface.
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Figure 6. Bounds for the stress intensity factor in the
composite plate.
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the width ratio hl/b 2 and for 0< a< hl. Even though the results

given in Table 3 are obtained only for h2/h1 = 2, it is clear that

since the pressure on the crack surface is uniform, the results

for any other value of h2/h1 can be obtained from those given for

h2/hl= 2 by using appropriate a/h2 ratios. Thus Figure 6 shows

the curves for four different values of h2/hl ratio, namely 2,

1.75, 1.5, and 1.25.

Table 1. Upper bound for the stress intensity factor: 0< a< hl
(crack in primary laminate), K 1 = 2, K2 = 1.16, V2/11 = 0.1527,
uniform crack surface pressure, -al.

a/hI  0.14 0.225 0.325 0.6 0.75 0.9 1.0

k/alVa 1.007 1.018 1.038 1.157 1.296 1.618 (0.550)

a= 0.66980

Table 2. Lower bound for k: 0< a<h l , K = 2, K2= KC= 1.66,

pc/l = 0.657, hl/b 2 = 2, (crack in primary laminate), uniform
crack surface pressure, -oal

a/hI  0.6 0.75 0.9 1.0

k/ol r 1.031 1.055 1.099 (0.920)

a= 0.52620

Table 3. Lower bound for k: h2 >a> hl , (crack in buffer strip),
K 1 =2, K2 = 1.16, Il/P2 = 6.55, uniform crack surface pressure, -02.

a/h2  0.5 0.75 0.875 1.0

k/a 2 /a 0.899 0.772 0.675 (1.160)

a= 0.42724
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Table 4. A (closer) lower bound for k: h2 >a > hI (crack in
buffer strip), K1 = 2, K 2 

= 1.16, 11l/12 = 6.55, crack surface
pressure p(x) =-a I for 0 < Ix hl, p(x)=-u 2 for hI < xl <a,

P2/Pl = E2/E1

a/h2  0.5 0.625 0.75 0.875 1.0

h2 - k/o 2 /a 4.231 2.396 1.820 1.302 (2.221)

a = 0.42724

a/h 2  1/1.75 0.68 0.92 1.0

1 1
h2  T.75 k/o 2 fr 4.120 2.580 1.397 (2.200)

a =0.42724

a/h2  2/3 0.8 0.94 1.0

1 1
h2  T.5 k/a2/fa 3.85 2.257 1.536 (2.900)

a= 0.42724

a/h2  0.8 0.88 0.96 1.0

S= T.25 k/o 2 /a 3.43 2.286 1.666 (3.650)

a = 0.42724

Table 4 shows the results corresponding to the assumption (d)

of the previous section for four different values of h2/hI . It

should again be noted that these results give a (closer) lower

bound for k when the crack is in the buffer strip. Since in this

case changing the material constants to obtain an upper bound is

not realistic, an approximation to an upper bound may be obtained

by changing the crack surface tractions. This may be done by

using the highest possible uniform crack surface pressure, p = O

instead of the lowest uniform pressure p= -a2 in the calculations.

The result would be simply the multiplication of the values found

in Table 3 and Figure 6 (c) by the factor o1/a2 = EI/E 2 = 4.7066
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(see, for example, the dashed curve (c') in Figure 6 which corre-

sponds to h2/h1 =2). These results are repeated in Table 5.

Table 5. An (approximate) upper bound for k: h2 >a> hl (crack
in buffer strip), Kl= 2, K2 =1.16, 1/2 = 6.55, P(x)= -al
(0 <lx < a).

a/h2  0.5 0.75 0.875 1.0

k/ 2 /a 4.231 3.634 3.177 (5.460)

a = 0.42724

The tables 1-5 also give the results for the crack terminat-

ing at a bi-material interface (i.e., a =h1 or a = h2 ). The

corresponding k values shown in the tables in parentheses and the

exponents a should be understood (and used) in the sense as

defined by eq. (8). Note that the k values given in the tables

and in Figure 6 tend to infinity or zero as the crack tip

alproaches the interface. The reason for this, of course, is

found in the definition of k as given by eq. (7) and in the

abrupt change in the power of the singularity a when the crack

tip touches the interface. A possible technique of applying

these results regarding the irregular singularity at 0.5 in

fracture studies may be found in [5].
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